Write vector \vec{f} in terms of vectors \vec{a} , \vec{b} and \vec{c} in the diagram on the left.

SCORE: /2 PTS

ALL ITEMS ON ALL QUESTIONS ① POINT UNLESS OTHERWISE MOTED

Consider the vectors
$$\vec{f} = 3\vec{k} - 3\vec{j}$$
 and $\vec{g} = -\vec{i} + 2\vec{j} - \vec{k}$.

[a] Find the angle between \vec{f} and \vec{g} . (Your answer should be in radians.)

$$\cos^{-1}\frac{7 \cdot g}{|f||g|} = \cos^{-1}\frac{-6-3}{3\sqrt{2}\cdot \sqrt{6}} = \cos^{-1}\frac{-9}{6\sqrt{3}} = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

[b] If
$$\vec{e}=7\vec{i}+c\vec{j}-5\vec{k}$$
 is perpendicular to \vec{g} , find the value of c .

$$\vec{e} \cdot \vec{g} = -7 + 2c + 5 = 0$$

Find the center and radius of the sphere
$$x^2 + y^2 + z^2 + 10x + 4y - 6z + 29 = 0$$
.

$$(x^2+10x+25+y^2+4y+4+z^2-6z+9=-29+25+4+9,$$

 $(x+5)^2+(y+2)^2+(z-3)^2=9,$
CENTER (-5,-2,3) RADIUS 3

Let \vec{w} be the vector with initial point Q and terminal point R.

[a] Find the equation of the sphere with P and Q as endpoints of a diameter.

CENTER = MIDPOINT =
$$(-1,0,1)$$
.

RADIUS = $\frac{1}{2}$ DISTANCE = $\frac{1}{2}$ $(8^{2}+4^{2}+4^{2}=2)$ $(x+1)^{2}+y^{2}+(2-1)^{2}=24$.

[b] Find $< -1, 2, -1 > \times \vec{w}$.

$$\overline{W} = \overline{QR} = \langle -6, 2, -1 \rangle$$

$$\begin{vmatrix} \overline{z} & \overline{j} & \overline{k} & \overline{j} \\ -1 & 2 - 1 & -1 & 2 \\ -6 & 2 - 1 & -6 & 2 \end{vmatrix} = -2\overline{z} + 6\overline{j} - 2\overline{k} = \langle 0, 5, 10 \rangle$$

$$\begin{vmatrix} -6 & 2 & -1 & -6 & 2 \\ -6 & 2 & -1 & -6 & 2 \end{vmatrix} + 2\overline{z} - \overline{j} + 12\overline{k} = \langle 0, 5, 10 \rangle$$

CHECK:
$$(0,5,10)\cdot(-1,2,-1)=10-10=0$$

 $(0,5,10)\cdot(-6,2,-1)=10-10=0$

[c] Find a unit vector in the opposite direction as \vec{w} .

$$-\frac{1}{\|\vec{\omega}\|}\vec{\omega} = -\frac{1}{|41|}\langle -6, 2, -1 \rangle = \left| \left| \frac{6|41|}{|41|}, \frac{-2|41|}{|41|}, \frac{|41|}{|41|} \right|$$

[d] If $\|\vec{v}\| = 3$, and the angle between \vec{w} and \vec{v} is $\frac{2\pi}{3}$ radians, find $\vec{w} \cdot \vec{v}$.

$$\| \vec{\omega} \| \| \vec{v} \| \cos \theta - [47 \ 3 \ -\frac{1}{2}] = [-\frac{3\sqrt{417}}{2}]$$

[e] In which octant is R?